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Abstract
Recently, Coulomb blockade physics was observed at room temperature in
a carbon nanotube single-electron transistor (Postma et al 2001 Science 293
76). In this work, we suggest that these devices may be promising for observing
2-channel Kondo physics, and allow for a detailed investigation of the 2-channel
Kondo fixed point. Experimental signatures of the Kondo effect in these systems
are discussed.

Since the seminal work of Nozieres and Blandin [1], the multichannel Kondo model, and in
particular the 2-channel Kondo (2CK) model, has received an enormous amount of attention [2].
In this model, a single magnetic impurity with spin s is coupled to k channels of conduction
electrons (k > 1). Remarkably, if k > 2s the system exhibits non-Fermi-liquid behaviour at
low energies. Since such non-trivial physics arises from such a (seemingly) simple model, it
is not surprising this model would be of interest to so many people.

Unfortunately, to date there has been no conclusive observation of 2CK (or,more generally,
multichannel Kondo) physics. However, this is not for lack of trying [2]. Probably the most
promising system for observing 2CK physics was the tunnelling 2-level system [2]. Indeed,
the conductance signal observed in ballistic metal point contacts are consistent with 2CK
scattering from tunnelling 2-level systems in the constriction [3]. However, the interpretation
in terms of 2CK physics is still unsettled [3–6].

Recently, quantum dots have provided a renewed excitement about the Kondo effect [7].
These systems are ideal for studying Kondo physics, because there are many parameters which
can be controlled. Therefore, many aspects of the Kondo effect can be probed. In recent
work [8], a single-electron transistor (SET) was fabricated by introducing two buckles in series
in a long single-wall carbon nanotube. The two buckles define a small island (i.e. a ‘quantum
dot’) within the nanotube (see figure 1 of [8]). Using this device, the authors of [8] observed
Coulomb blockade physics at room temperature. Moreover, they found that the conductance
had a power-law temperature dependence, consistent with a Luttinger liquid model for the
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Figure 1. (a) Screening cloud for the case of non-interacting leads. The low energy physics is
described by the 1-channel Kondo fixed point. (b) Screening cloud with (strong) interactions in
the leads. The low energy physics is described by the 2CK fixed point.

leads. In this work, we suggest that these devices could be promising for studying Kondo
physics, and in particular, for observing the physics of the elusive 2CK fixed point.

The carbon nanotube SET is promising for several reasons. It has been shown that a
quantum dot coupled to Luttinger liquid leads will flow to the 2CK fixed point, provided the
Luttinger parameter is small enough [9, 10]. Carbon nanotubes are the only material we are
aware of where the Luttinger parameter is small enough for this to happen (see below for
further discussion). Moreover, the device of [8] allows for the possibility of achieving high
Kondo temperatures. This is because the charging energy (U0) and single-particle level-
spacing (δ) of this device, which set the scale for the Kondo temperature, are so large:
U0 ≈ 82 meV (≈951 K) and δ ≈ 41 meV (≈476 K). These values should be compared
to typical values in semiconductor devices, U0 ≈ 2 meV (≈23 K) and δ ≈ 400 µeV (≈5 K),
where Kondo temperatures as high as TK ≈ 3 K were achieved [11]. It is worth noting that the
Kondo temperature is what casts the most serious doubt on 2CK physics in tunnelling 2-level
systems. More specifically, it has been shown that tunnelling 2-level systems will have Kondo
temperatures which are unattainably low, making the observation of 2CK physics unlikely [5].

We begin our discussion by recalling some facts about carbon nanotubes [12]. As is
well known, these materials consist of a sheet of graphite rolled into a cylinder. Interestingly,
‘armchair’ nanotubes (such as those used in [8]) possess two one-dimensional bands of gapless
excitations [13]. These two bands (which we label as band-c and band-d) disperse with the
same velocity, and determine the low energy electronic properties. Since carbon nanotubes are
essentially one-dimensional, the interactions between electrons have a pronounced effect [14].
For isolated single-wall nanotubes, the Coulomb interaction is unscreened. This long ranged
interaction causes the system to behave as a Luttinger liquid at all temperatures [15, 16].
Interbranch (i.e. backscattering) interactions, on the other hand, are weak [15]. In principle,
these (backscattering) interactions will open a spin gap [17]. However, the spin gap is expected
to be very small. Indeed, in [8], Luttinger liquid behaviour was observed down to 4 K with no
sign of a spin gap, implying that the spin gap energy scale must be considerably lower than
4 K. Therefore, we believe it is safe to ignore the effects of the spin gap (if necessary, a small
magnetic field could be applied to break the spin gap).

In [8], an SET was fabricated by creating a small island within a long single-wall carbon
nanotube. As this device was made by introducing buckles in a nanotube, it will probably be
difficult to control. In particular, it will probably be difficult to control the couplings between
the leads and the island. Considering the enormous advances in experiments on nanoscale
systems, it is not unreasonable to assume that a modified form of this device can be fabricated,
where the various couplings can be controlled. In the following, we will assume this to be
the case; we will show that such a device could allow for a detailed investigation of the 2CK
fixed point.
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Being interested in the low energy properties of the system, we focus on the uppermost
level of the island and model it as an Anderson impurity. The Hamiltonian we consider is

Hisland = ε0

∑
s

n f
s + U0n f

↑n f
↓ − h0

2
(n f

↑ − n f
↓)−

∑
λ=c,d
s=↑,↓

(t1λψ
†
1,λ,s(0) + t2λψ

†
2,λ,s (0)) fs + h.c.,

(1)

where ψi,λ,s destroys an electron with spin-s in lead-i (i = 1, 2) and band-λ (λ = c, d); fs

destroys an electron with spin-s on the island; n f
s = f †

s fs ; ε0 is the energy level of the island,
which can be controlled by a gate voltage; U0 is the charging energy; h0 is the magnetic field;
tiλ is the matrix element for an electron to tunnel to the island from band-λ in lead-i . It is
useful to introduce bonding and antibonding combinations

ψi,b,s = (ticψi,c,s + tidψi,d,s )/
√

Ni ,

ψi,a,s = (tidψi,c,s − ticψi,d,s )/
√

Ni ,
(2)

with Ni = t2
ic + t2

id . In terms of these operators, we see that only the bonding combinations
couple to the island. Being interested in the Kondo regime, we integrate out charge fluctuations
on the island. Working to second order in perturbation theory [18], we arrive at the effective
Hamiltonian

Hint = τ · σs,s ′

2
(J1ψ

†
1,b,s (0)ψ1,b,s ′ (0) + 1 → 2)

+ J12τ · σs,s ′

2
(ψ

†
1,b,s (0)ψ2,b,s ′ (0) + h.c.)− h0τz, (3)

where τ is the spin operator for the electron on the island, and

Ji j = (2ti t j/ε0)U0/(U0 − ε0),

with Ji ≡ Jii . It is important to note that Ji j > 0. It should also be noted that in equation (3)
we have not displayed the potential scattering terms [18] which were generated. For the system
considered in this work, these terms have a very small effect and can be ignored [10].

The dynamics of the leads is described by the Hamiltonian Hleads = Hlead−1 + Hlead−2,
where Hlead−i = H 0

i + H 1
i is the Hamiltonian for lead-i with [15]

H 0
i = −ivF

∑
λ,s

∫ 0

−∞
dx (ψ†

R,i,λ,s∂xψR,i,λ,s − R → L)

H 1
i = U

∫ 0

−∞
dx

(∑
λ,s

ψ
†
R,i,λ,sψR,i,λ,s + ψ†

L,i,λ,sψL,i,λ,s

)2

.

(4)

In the above equation, ψR,i,λ,s (ψL,i,λ,s ) is the right (left) moving component of ψi,λ,s .
Furthermore, we have followed [15] and taken the Coulomb interaction to be screened beyond
some long distance; U is the effective strength of this interaction. In the previous paragraph,
we saw that only the bonding combination of the fermion fields (equation (2)) couples to the
impurity. Fortunately, we can express the Hamiltonian of the leads in terms of the bonding
and antibonding operators as well. In terms of these operators, the Hamiltonian has the same
form as equation (4), except the labels c and d are replaced everywhere by b and a.

In what follows, we will make extensive use of the boson representation. To do so, the
electron operator is written as ψR/L,i,λ,s ∼ e±i

√
4πφR/L,i,λ,s where the chiral fields, φR,i,λ,s and

φL,i,λ,s , are related to the usual Bose fieldφi,λ,s and its dual field θi,λ,s byφi,λ,s = φR,i,λ,s +φL,i,λ,s

and θi,λ,s = φR,i,λ,s − φL,i,λ,s . It will also prove useful to form charge and spin fields
φi,λ,ρ/σ = (φi,λ,↑ ± φi,λ,↓)/

√
2, and then form the combinations φi,ρ± = (φi,b,ρ ± φi,a,ρ)/

√
2
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describing total and relative charge fluctuations in lead-i . In terms of these variables, the
Hamiltonian for lead-i is

Hlead−i = vρ+

2

∫ 0

−∞
dx Kρ+(∂xθi,ρ+)2 +

1

Kρ+
(∂xφi,ρ+)2 +

vF

2

∫ 0

−∞
dx (∂xθi,ρ−)2 + (∂xφi,ρ−)2

+
vF

2

∑
λ=b,a

∫ 0

−∞
dx (∂xθi,λ,σ )

2 + (∂xφi,λ,σ )
2, (5)

where Kρ+ = 1/
√

1 + 8U/(πvF ) and vρ+ = vF/Kρ+ . Experimentally, it has been found that
0.19 � Kρ+ � 0.26 for single-wall carbon nanotubes [8]. Finally, to analyse the physics it
will prove useful to unfold the system, and work solely in terms of right moving fields [19].

As our interest is in the physics of the 2CK fixed point, we will assume the system is close
to this fixed point in what follows. However, before proceeding with our analysis, it is useful
to review how 2CK physics arises. Recall that for the case of non-interacting leads, the system
flows to the 1-channel Kondo fixed point. This occurs because an electron in the symmetric
orbital centred about the island will screen the electron on the island (see figure 1(a)). However,
with interactions in the leads (and small enough Luttinger parameter), tunnelling between leads
is suppressed [9, 10]. Note that in order to form a screening cloud in the symmetric orbital
centred about the island, one must be able to freely tunnel between the two leads. However,
if tunnelling is suppressed, heuristically, this forces two screening clouds to form. Hence, the
impurity is overscreened; the system flows to the 2CK fixed point (see figure 1(b)).

To analyse the physics, we first start with equation (3). Using the renormalization group
(RG), we trace the RG flows of the parameters as the system flows close to the 2-channel
Kondo fixed point: J1 + J2 = O(1); J1 − J2 
 O(1); J12 
 O(1); h0 
 O(1). (Note that
we are assuming J1 ≈ J2, so that the system does, in fact, flow close to the 2CK fixed point.)
Then, to analyse the physics near the 2CK fixed point, we follow [20] and form combinations
of the fields in the two leads: φR,c, φR,sp, φR, f , and φR,s f . Next, we perform the unitary
transformation, U = exp(i

√
4πτ zφR,sp(0)), which ties a spinon from the leads to the island.

Finally, we introduce new fermion fields, d ∼ τ− and X ∼ ei
√

4πφR,s f . Upon performing these
transformations, Hint becomes

Hint = vFλ+(d
† − d)(X†(0) + X (0)) + vFλ−(d† + d)(X†(0)− X (0))− vFλh(d

†d − 1/2)

+ vF g(d† + d)(e−i
√

4πφR, f (0) − ei
√

4πφR, f (0)), (6)

where λ+ ∼ J ′
1 + J ′

2, λ− ∼ J ′
1 − J ′

2, g ∼ J ′
12, and λh ∼ h′

0. (J ′
1, J ′

2, J ′
12, and h′

0 are the
renormalized values of the parameters near the 2CK fixed point.) Note that in equation (6),
we have displayed only the most relevant operators.

A few words are in order about equation (6). To begin with, the λ+ term sets the 2CK
energy scale; the g, λ−, and λh terms are perturbations about the 2CK fixed point. The g term
has dimension (1 + 1/Kρ+)/4, and is relevant for Kρ+ > 1/3. Hence, this term is irrelevant
for the system we are considering. Both the λ− and λh terms have dimension 1/2 and are
relevant. If these terms are absent, the zero temperature fixed point would be the 2CK fixed
point. However, nonzero λ− and/or λh drives the system away from the 2CK fixed point. It
should be noted that the dimensions of the g, λ−, and λh terms are properties of the 2CK fixed
point. In particular, they are different from the dimensions near the ultraviolet fixed point; they
can, in fact, be observed experimentally (see below).

We begin by considering the case where the system flows to the 2CK fixed point:
λ−, λh = 0. Signatures of the 2CK fixed point can be observed in conductance measurements.
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Using the Golden Rule, we find (for Kρ+ < 1/3)

G/G0 = 1

�(β)

(
T

TK

)β−2

cosh

(
eV

2T

)∣∣∣∣�
(
β

2
+ i

eV

2πT

)∣∣∣∣
2

×
{

1 +
2

π
tanh

(
eV

2T

)
Im

[
ψ

(
β

2
+ i

eV

2πT

)]}
. (7)

In equation (7), G0 = (2e2/h)(g′)2/(2π); β = (1/2)(1+1/Kρ+); �(x) is the gamma function,
and ψ(x) is the psi function [21]. Notice that equation (7) exhibits ω/T -scaling. This occurs
because the 2CK fixed point is a non-trivial scale-invariant fixed point. Moreover, in linear
response (V → 0) G ∼ T β−2. This temperature dependence is a property of the 2CK fixed
point, and reflects the dimension of the g term in equation (6). With no Kondo effect, one
expects G ∼ T α−2 where α = (1/2)(3 + 1/Kρ+). This behaviour is what was observed in [8].
Notice that the exponent is smaller near the 2CK fixed point than when there is no Kondo
effect. In other words, tunnelling is enhanced near the 2CK fixed point, as compared to when
there is no Kondo effect. This can be understood rather easily. It is well known that in a
Luttinger liquid, spin and charge separate. Also, only electrons can tunnel between leads; the
fractionalized excitations of the Luttinger liquid are unable to tunnel between leads. However,
in order for an electron to tunnel, spin and charge must first recombine to form an electron;
then the electron can tunnel. An important property of the 2CK fixed point is that a spinon
from the leads is tied to the island (see the discussion above equation (6)). Since a spinon is
tied to the island, it is easier for spin and charge to recombine. Hence, interlead tunnelling
increases, and the exponent decreases.

Since G → 0 as T → 0, it may appear the system is behaving simply as two (semi-infinite)
decoupled nanotubes. However, this is not correct. This is most apparent if one considers the
spin conductance—two decoupled nanotubes would have vanishing spin conductance (for
T → 0); the 2CK fixed point has perfect spin conductance [10]. This can also be understood
rather easily. A heuristic picture of 2CK physics (with a spin-1/2 impurity) is that the impurity
traps two electrons, which are aligned antiparallel to the impurity. The impurity plus the two
trapped electrons gives a net effective spin-1/2 impurity. This effective spin-1/2 impurity then
goes on to trap two electrons, which are aligned antiparallel to the effective impurity. This
procedure continues ad infinitum [1]. In doing this, the two semi-infinite leads are essentially
joined together to form a single infinite lead, as far as spin excitations are concerned. Recall that,
for the case of non-interacting leads, the system flows to the one-channel Kondo fixed point;
the signature of the Kondo effect is perfect conductance through the island [7]. Essentially, the
Kondo effect has joined two semi-infinite leads together to form a single infinite lead. Here, a
similar effect occurs, except the two leads are joined together only in the spin sector (and not
the charge sector). Unfortunately, the spin conductance is difficult to measure. However, this
should be observable in thermal conductance measurements. More specifically,

κ → κ0 ≡ π2

3h
T as T → 0,

if the system flows to the 2CK fixed point (κ0 is the value for perfect thermal conductance).
Now we consider the case where λ−, λh �= 0. These terms are relevant perturbations to

the 2CK fixed point. Moreover, as mentioned above, both of these terms have dimension 1/2
near the 2CK fixed point. The λ− term drives the system to the 1-channel Kondo fixed point,
where the electron on the island forms a singlet with the electrons in the lead with the larger
exchange coupling [1, 22]. The λh term drives the system to a fixed point where the electron
on the island is spin polarized; spin-flip processes are energetically costly, and the electron on
the island behaves as a potential scatterer [22]. The energy scale at which 2CK behaviour will
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Figure 2. G/G0 versus T/TK. Kρ = 0.29, 0.26, 0.23, 0.2 in order from the top to the bottom
curve. �− and �h were taken to be �− = 0.07 and �h = 0.1.

no longer be observable is determined by the values of λ− and λh . The effects of these terms
can be most directly observed in the spin conductance. However, as mentioned above, since
the spin conductance is difficult to measure, the thermal conductance is the most promising
place to observe these effects. As charge transport is suppressed, the thermal conductance will
be dominated by spin. Computing the thermal conductance [23] due to spin, we find

κ/κ0 =
(

3

4π2

)(
TK

T

)3 ∫
dx sech2

(
xTK

2T

)
x4(1 − �−)2

(x2 − �h − �−)2 + x2(1 + �−)2
, (8)

where �− ∼ λ2− and �h ∼ λ2
h .

To better understand equation (8), let us consider the case �h = 0, �− �= 0. (The case
�− = 0, �h �= 0 gives similar results.) Then, for 0 
 T 
 TK, equation (8) gives

κ/κ0 = 1 − �2
−

3

π2

(
TK

T

)2

.

The 1/T 2 correction to the thermal conductance is a property of the 2CK fixed point, and
reflects the dimension of the λ− term. However, as can be seen from equation (8), the 1/T 2

temperature dependence will be changed as we go to even lower temperatures, since at those
energies the system is far away from the 2CK fixed point.

The effects of λ− and λh can also be observed in the (charge) conductance. In linear
response, we find

G/G0 = 1

�(β)

(
T

TK

)β−2 ∫
dx

2π
sech

(
xTK

2T

)

×
∣∣∣∣�

(
β

2
+ i

xTK

2πT

)∣∣∣∣
2

�−(1 + x2) + �h

(x2 − �h − �−)2 + x2(1 + �−)2
. (9)

G/G0 versus T/TK is plotted in figure 2 for several values of Kρ+ . Note that G shows 2CK
behaviour (G ∼ T β−2) for �h, �− 
 T 
 TK. However, for T < �− and/or T < �h , the
system is far from the 2CK fixed point, and the temperature dependence is modified from its
2CK behaviour.

In conclusion, carbon nanotube SETs [8] may be promising for observing 2CK physics,
and could allow for a detailed investigation of the 2CK fixed point. It is worth noting that
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generalizations of this device could allow for the study of other related phenomena. For
example, introducing two islands in the nanotube could allow one to study two-impurity Kondo
physics, or, more generally, the properties of coupled quantum dots. Moreover, short carbon
nanotubes have been shown to exhibit properties characteristic of nanoscale conductors. By
fabricating a similar device in a short nanotube, one could study interesting finite-size effects.
In particular, this system may allow for the elusive Kondo cloud to finally be observed [24].

Acknowledgments

EHK is grateful to H Paik for bringing [8] to his attention. This work was supported by the
NSERC of Canada (EHK and CK), Materials and Manufacturing of Ontario (EHK and CK),
and the Spanish grant PB98-0685 (GS).

References

[1] Nozieres P and Blandin A 1980 J. Physique (Paris) 41 193
[2] For a review, see Cox D L and Zawadowski A 1998 Adv. Phys. 47 599
[3] Ralph D C and Buhrman R A 1992 Phys. Rev. Lett. 69 2118

Ralph D C, Ludwig A W W, von Delft J and Buhrman R A 1994 Phys. Rev. Lett. 72 1064
[4] Wingreen N S, Altshuler B L and Meir Y 1995 Phys. Rev. Lett. 75 769
[5] Aleiner I L et al 2001 Phys. Rev. Lett. 86 2629
[6] Zawadowski A and Zaránd G 2000 Preprint cond-mat/0009283
[7] For a review, see Kouwenhoven L and Glazman L 2001 Phys. World 14 (1) 33
[8] Postma H W Ch et al 2001 Science 293 76
[9] Fabrizio M and Gogolin A O 1995 Phys. Rev. B 51 17827

[10] Kim E H 2001 Preprint cond-mat/0106575
[11] See, for example, Goldhaber-Gordon D et al 1998 Phys. Rev. Lett. 81 5225
[12] For reviews, see Dekker C 1999 Phys. Today 52 (5) 22

McEuen P L 2000 Phys. World 13 (6) 31
[13] Hamada N et al 1992 Phys. Rev. Lett. 68 1579

Mintmire J W et al 1992 Phys. Rev. Lett. 68 631
Saito R et al 1992 Appl. Phys. Lett. 60 2204

[14] See, for example, Solyom J 1979 Adv. Phys. 28 201
[15] Kane C L, Balents L and Fisher M P A 1997 Phys. Rev. Lett. 79 5086
[16] Egger R and Gogolin A O 1997 Phys. Rev. Lett. 79 5082
[17] See, for example, Lin H-H, Balents L and Fisher M P A 1997 Phys. Rev. B 56 6569 and references therein
[18] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
[19] Eggert S and Affleck I 1992 Phys. Rev. B 46 10866
[20] Schiller A and Hershfield S 1995 Phys. Rev. B 51 R12896

Majumdar K, Schiller A and Hershfield S 1998 Phys. Rev. B 57 2991
[21] Gradshteyn I S and Ryzhik I M 1994 Table of Integrals, Series, and Products (San Diego, CA: Academic)
[22] Affleck I et al 1992 Phys. Rev. B 45 7918
[23] Sivan U and Imry Y 1986 Phys. Rev. B 33 551
[24] Simon P and Affleck I 2002 Phys. Rev. Lett. 89 2066


